Rhodium-Catalyzed Asymmetric Conjugate Additions of Boronic Acids to Enones Using DIPHONANE: A Novel Chiral Bisphosphine Ligand

Koen Vandyck, Bavo Matthys, Mario Willen, Koen Robeyns,[†] Luc Van Meervelt,[†] and Johan Van der Eycken^{*}

Laboratory for Organic and Bioorganic Synthesis, Department of Organic Chemistry, Ghent University, Krijgslaan 281 (S.4), B-9000 Gent, Belgium johan.vandereycken@ugent.be

Received September 20, 2005 (Revised Manuscript Received December 6, 2005)

ABSTRACT

The synthesis of a novel enantiopure C_2 -symmetric bisphosphine, DIPHONANE, was accomplished starting from 2,5-norbornadione, utilizing (*R*,*R*)- and/or (*S*,*S*)-(2,3-*O*-di[(phenylamino)carbonyl]tartaric acid for the resolution of an intermediate phosphineoxide. The application of this ligand in the rhodium-catalyzed asymmetric conjugate addition of boronic acids to cyclic enones provides the 1,4-addition products in good yields (69–98%) and high ee's (78–95% ee). A byproduct arising from a consecutive 1,4-addition and 1,2-addition was also observed.

The 1,4-addition of aryl or alkenyl groups to electrondeficient double bonds constitutes an interesting approach for C–C bond formation.¹ Therefore, the asymmetric rhodium-catalyzed 1,4-addition to α,β -unsaturated enones has recently received a lot of attention applying various ligands such as biaryl bisphosphines,² phosphoramidites,^{3a,b} BINOLbased diphosphonites,^{3c} amidomonophosphines,^{3d} N-heterocyclic carbenes,^{3e} ferrocenyl-based bisphosphines,^{2c} a P-chiral phosphine,^{3f} and dienes.^{3g-k} Some other bisphosphine ligands, although efficient in the Rh(I)-catalyzed hydrogenation, fail

LETTERS 2006 Vol. 8, No. 3 363–366

ORGANIC

[†]Biomolecular Architecture, Department of Chemistry, K. U. Leuven, Celestijnenlaan 200F, B-3001 Leuven (Heverlee), Belgium.

⁽¹⁾ For a review on rhodium-catalyzed asymmetric 1,4-addition and C-C bond formation, respectively, see: (a) Hayashi, T.; Yamasaki, K. *Chem. Rev.* **2003**, *103*, 2829–2844. (b) Fagnou, K.; Lautens, M. *Chem. Rev.* **2003**, *103*, 169–196.

^{(2) (}a) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J. Am. Chem. Soc. **1998**, 120, 5579–5580. (b) Amengual, R.; Michelet, V.; Genêt, J.-P. Synlett **2002**, 1791–1794. (c) Pucheault, M.; Darses, S.; Genêt, J.-P. Eur. J. Org. Chem. **2002**, 3552–3557. (d) Shi, Q.; Xu, L.; Li, X.; Jia, X.; Wang, R.; Au-Yeung, T. T.-L.; Chan, A. S. C.; Hayashi, T.; Cao, R.; Hong, M. Tetrahedron Lett. **2003**, 44, 6505–6508. (e) Madec, J.; Michaud, G.; Genêt, J.-P.; Marinetti, A. Tetrahedron: Asymmetry **2004**, 15, 2253–2261. (f) Yuan, W.-Y.; Cun, L.-F.; Gong, L.-Z. Mi, A.-Q.; Jiang, Y.-Z. Tetrahedron Lett. **2005**, 46, 509–512. (g) Ogasawara, M.; Ngo, H. L.; Sakamoto, T.; Takahashi, T.; Lin, W. Org. Lett. **2005**, 7, 2881–2884.

^{(3) (}a) Boiteau, J.-G. Minnaard, A. J, Feringa, B. L. J. Org. Chem. 2003, 68, 9481-9484. (b) Iguchi, Y.; Itooka, R.; Miyaura, N. Synlett 2003, 1040-1042. (c) Reetz, M. T.; Moulin, D.; Gosberg, A. Org. Lett. 2001, 3, 4083-4085. (d) Kuriyama, M.; Nagai, K.; Yamada, K.-I.; Miwa, Y.; Taga, T.; Tomioka, K. J. Am. Chem. Soc. 2002, 124, 8932-8939. (e) Ma, Y.; Song, S.; Ma, C.; Sun, Z.; Chai, Q.; Andrus, M. B. Angew Chem., Int. Ed. 2003, 42, 5871–5874. (f) Imamoto, T.; Sugita, K.; Yoshida, K. J. Am. Chem. Soc. 2005, 127, 11934-11935. (g) Defieber, C.; Paquin, J.-F.; Serna, S.; Carreira, E. M. Org. Lett. 2004, 6, 3873-3876. (h) Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. J. Am. Chem. Soc. 2003, 125, 11508-11509. (i) Otomaru, Y.; Kina, A.; Shintani, R.; Hayashi, T. Tetrahedron: Asymmetry 2005, 16, 1673-1679. (j) Otomaru, Y.; Okamoto, K.; Shintani, R.; Hayashi, T. J. Org. Chem. 2005, 70, 2503-2508. (k) Lang, F.; Breher, F.; Stein, D.; Grützmacher, H. Organometallics 2005, 24, 2997-3007. For some recent results on 1,4-additions to other α,β -unsaturated systems, see: (1) Paquin, J. F.; Defieber, C.; Stephenson, C. R. J.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 10850–10851 for enals. (m) Paquin, J. F.; Stephenson, C. R. J.; Defieber, C.; Carreira, E. M. Org. Lett. 2005, 7, 3821-3824 for acrylic esters. (n) Shintani, R.; Duan, W. L.; Nagano, T.; Okada, A.; Hayashi, T. Angew. Chem., Int. Ed. 2005, 44, 4611-4614 for maleimides. (o) Shintani, R.; Kimura, T.; Hayashi, T. Chem. Commun. 2005, 25, 3213-3214 for Weinreb amides. (p) Jagt, R. B. C.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Org. Lett. 2005, 7, 2433-2435 for 2,3dihydro-4-pyridones. (q) Chen, G.; Tokunaga, N.; Hayashi, T. Org. Lett. 2005, 7, 2285–2288 and references therein for coumarins.

to induce high reactivity and/or selectivity in the rhodiumcatalyzed 1,4-addition to α,β -unsaturated enones.^{1,2a,c} Within our interest for the design of new ligand architectures⁴ and stimulated by the synthesis of DIANANE⁵ (Figure 1), we

wish to present our results concerning the synthesis and application of a novel C_2 -symmetric bisphosphine, DIPHO-NANE.

Our approach started with the known 2,5-norbornadione (\pm) -1⁶ (Scheme 1). Dienolization/alkylation of this interme-

diate is usually addressed in two separate steps,^{3h,j,7} but nevertheless the dienolization with KHMDS followed by treatment with PhNTf₂ gave a satisfactory yield of the bistriflate (\pm)-**2**. Pd(0)-catalyzed coupling of **2** with HPPh₂ and subsequent oxidation resulted in the racemic vinylic bisphosphineoxide (\pm)-**3**.^{8,9} This intermediate was preferred over its phosphino-borane complex because it allows resolution by applying the hydrogen bonding capacity of the phosphineoxide and BH₃-protected phosphines tend to act as a catalyst poison for heterogeneous hydrogenation.¹⁰ Hydrogenation with Pd on charcoal (10 w/w %) resulted stereoselectively in *endo*-bisphosphine-oxide (\pm)-**4**.

The bis-*endo* configuration of (\pm) -4 could be deduced from the ${}^{3}J_{PC}$ coupling in the ${}^{31}P$ NMR spectrum of P with C₇ being 15.2 Hz (expected *endo* = 12–16.8 Hz, *exo* \approx 0 Hz).¹¹ Nevertheless, resolutions applying commercial (*R*,*R*)-(-)-di-*O*,*O*-benzoyltartaric acid (DBTA) **7**, *R*-(-)-mandelic acid **9**, or (1*R*)-(-)-camphorsulfonic acid (CSA) **10** (Figure 2) were unsuccessful. Fortunately, when (*R*,*R*)-(2,3-di-

Figure 2. Chiral acids tested for the resolution of (\pm) -4.

[(phenylamino)carbonyl]tartaric acid 8 or its enantiomer was applied (both obtained in three steps from the corresponding tartaric acid¹²), bis-phosphineoxide (\pm) -4 was resolved with high enantiomeric excess (>98% ee), as determined by HPLC analysis with a chiral stationary phase column (Chiralpak AD-H). In this way, enantiomerically pure (2S,5S)-4 could be obtained in 35% yield in two steps from (\pm) -3. Reduction of the phosphineoxide (HSi(OEt)₃, $Ti(OiPr)_4)^{13}$ was followed by reprotection with BH₃ to ensure easy purification of the phosphine precursor, resulting in the isolation of 5. Again, the ${}^{3}J_{PC}$ coupling with C₇ appeared to be large (12.8 Hz), proving that no epimerization had occurred. The absolute configuration of 5, being (+)-(1S,2S,4S,5S) was established by single-crystal X-ray diffraction (Figure 3).⁸ By refluxing the phosphine-borane in EtOH, an efficient procedure recently applied in our group for mild deprotection of phosphines,¹⁴ DIPHONANE 6 was obtained.

The efficiency of our new ligand was tested in the rhodium-catalyzed 1,4-addition of arylboronic acids to enones (Table 1).^{1–3} We first examined the addition of phenylboronic acid **12a** to cyclohexenone **11A**. In accordance

^{(4) (}a) Vandyck, K.; Matthys, B.; Van der Eycken, J. *Tetrahedron. Lett.* **2005**, *46*, 75–78. (b) Kuppens T.; Vandyck K.; Van der Eycken J.; Herrebout W.; van der Veken, B. J.; Bultinck P. J. Org. Chem. **2005**, *70*, 9103–9114. (c) De Coster, G.; Vandyck, K.; Van der Eycken, E.; Van der Eycken, J.; Elseviers, M.; Röper, H. *Tetrahedron: Asymmetry* **2002**, *13*, 1673–1679.

^{(5) (}a) Berkessel, A.; Schröder, M.; Sklorz, C. A.; Tabanella, S.; Vogl,
N.; Lex, J.; Neudörfl, J. M. J. Org. Chem. 2004, 69, 3050–3056. (b)
Berkessel, A.; Menche, D.; Sklorz, C. A.; Schröder, M.; Paterson I. Angew.
Chem., Int. Ed. 2003, 42, 1032–1035.

⁽⁶⁾ Hawkins, R. T.; Hsu, R. S.; Wood, S. G. J. Org. Chem. 1978, 43, 4648–4650.

⁽⁷⁾ Smith, B. T.; Wendt, J. A.; Aube, J. Org. Lett. 2002, 4, 2577–2579.
(8) See Supporting Information for X-ray diffraction structure.

⁽⁹⁾ Gilbertson, S. R.; Fu, Z.; Starkey, G. W. *Tetrahedron Lett.* **1999**, 40, 8509–8512.

^{(10) (}a) Boerner, A.; Ward, J.; Ruth, W.; Holz, J.; Kless, A.; Heller, D.; Kagan, H. B. *Tetrahedron* **1994**, *50*, 10419–10430. (b) Vandyck, K.; Van der Eycken, J. Unpublished results.

⁽¹¹⁾ Maffei, M.; Buono, G. New J. Chem. 1988, 12, 923-930.

^{(12) (}a) Cereghetti, M.; Rageot, A. European Patent 511 558, 1992. (b) Cereghetti, M.; Schmid, R.; Schönholzer, P.; Rageot, A. *Tetrahedron Lett.* **1996**, *37*, 5343–5346. (c) Chen, Y.-X.; Li, Y.-M.; Lam, K.-H.; Chan, A. S. C. *Chin. J. Chem.* **2001**, *19*, 794–799.

⁽¹³⁾ Coumbe, T.; Lawrence, J. N.; Muhammad, F. Tetrahedron Lett. 1994, 35, 625–628.

⁽¹⁴⁾ Although addition of DABCO accelerated the reaction, it was not crucial to obtain full conversion. For deprotection with EtOH, see: (a) Moulin, D.; Bago, S.; Bauduin, C.; Darcel, C.; Jugé, S. *Tetrahedron: Asymmetry* **2000**, *11*, 3939–3956. (b) Vervecken, E.; Van der Eycken, J. To be submitted.

Figure 3. X-ray crystal structure of (2S,5S)-5.

with earlier findings,¹⁵ we observed that the generation of the catalyst from [RhCl(C₂H₄)₂]₂ in the presence of KOH and (*S*,*S*)-DIPHONANE (entry 1) resulted in a more active catalyst than in the case of (*S*,*S*)-DIPHONANE with Rh(acac)(C₂H₄)₂ (entries 2 and 3), whereas the 1,4-addition product was produced with comparable enantiomeric excess (85% and 86% ee, respectively). The use of 3 mol % of catalyst (entry 4) instead of 1 mol % (entry 1) resulted in an equal enantiomeric excess (85%). The [RhCl(C₂H₄)₂]₂/KOH/ DIPHONANE system allowed lowering the reaction tem-

Table 1.	Asymmetric 1,4-Addition of	Phenyl	lboronic Acid 12a
to Cyclohe	exenone $\mathbf{11A}^{a}$		
O + Ph	Rh(I), (2S,5S)-DIPHONANE		HO Ph

\sim				· ∕ ′PI	h	💛 'Ph
1 1A	1 2 a			(R)- 13A a		(1 <i>R</i> ,3 <i>R</i>)- 14A a
entrv	temp (°C)	solvent	time (h)	13Aa (%) ^b	ee (%) ^c	14Aa [%] (ee [%]) ^d
1	100	diaman a //II O 10/1		<u> </u>	05	E
T	100	$dloxane/H_2O 10/1$	Z	00	60	Э
2^e	100	dioxane/H ₂ O 10/1	5	43	86	1
3^e	80	dioxane/H ₂ O 10/1	21	50	87	1
4^{f}	100	dioxane/H ₂ O 10/1	3	72	85	7
5	60	dioxane/H ₂ O 10/1	4	83	90	6 (88)
6	50	dioxane/H ₂ O 10/1	4	78	91	12(89)
7^g	50	dioxane/H ₂ O 10/1	16	65	87	<1
8	50	DME/H ₂ O 10/1	16	69	90	<1
9	50	EtOH/H ₂ O 10/1	16	76	91	4
10	50	toluene/H ₂ O 10/1	21	9	nd	<1
11	50	dioxane/H ₂ O 5/1	4	63	90	3
12	50	ethyleneglycol/	6	67	89	6
		dioxane 3/1				
13	50	2-ethoxyethanol	21	74	90	10
14^h	45	dioxane/H ₂ O 10/1	19	50	91	$32 \ (89)^i$

^{*a*} Standard conditions [RhCl(C₂H₄)₂]₂/DIPHONANE/cyclohexenone 0.5/1.1/100, ~0.35 M **11A**, 1.5 equiv KOH, 5 equiv PhB(OH)₂. ^{*b*} Isolated as a mixture with **14Aa**. ^{*c*} Determined by HPLC analysis with a chiral stationary phase column (Chiralcel AD-H). ^{*d*} Determined from ¹H NMR ratio with (*R*)-**13Aa** based on **11A**, enantiomeric excess determined by HPLC analysis with a chiral stationary phase column (Chiralcel AD-H). ^{*e*} Determined from ¹H NMR ratio with (*R*)-**13Aa** based on **11A**, enantiomeric excess determined by HPLC analysis with a chiral stationary phase column (Chiralcel OD-H). ^{*e*} ¹% Rh(acac)(C₂H₄)₂ was used as catalyst precursor without the addition of base. ^{*f*} 1.5% [RhCl(C₂H₄)₂]₂ was used. ^{*s*} 1.5 equiv NEt₃ was applied as a base. ^{*h*} 0.91 M **11A**, 2 equiv PhB(OH)₂. ^{*i*} ~95% de.

perature to 50 °C (entries 5 and 6), affording the product with an enantiomeric excess of 91%. Changing the base from KOH to NEt₃ (entry 7) or changing the solvent (entries 8-13) did not lead to better results.

As a byproduct, resulting from the asymmetric 1,4-addition and a consecutive 1,2-addition, (1R,3R)-1,3-diphenyl-cyclohexanol **14Aa** could be isolated.¹⁶ The Rh(I)-catalyzed 1,2arylation of ketones is usually limited to strained ketones as acceptor or to intramolecular additions, whereas arylation of aldehydes or aldimines has been described to a much larger extent.^{1,17} The 1,2-addition showed a high level of diastereoselectivity (95% de, entry 14), whereas the resulting product **14Aa** showed a comparable enantiomeric excess as the initial 1,4-adduct **13Aa** (entries 5, 6, and 14). At higher concentration (0.91 M **11A**) **14Aa** was formed in up to 32%, applying only 2 equiv **12a** at 45 °C.

Extending the Rh(I)/DIPHONANE-catalyzed addition to a variety of boronic acids 12a-f and a range of acceptors 11A-E (Table 2) revealed high selectivity in the addition of 4-CF₃-Ph (12b) and 1-naphthyl boronic acid (12d) to cyclohexenone (11A, 92% ee, entry 1, and 95% ee, entry 3, respectively). The hindered *o*-tolyl boronic acid (12e) gave

	с Д)			0
	\subset		0.5% [Rh((2S,5S)-D	CI(C ₂ H ₄) ₂] ₂ , 1.1% (IPHONANE	Ar
	11 A	\-D	1.5 eq KO	──►	or
		r B	dioxane/H	l₂O 10/1, 50 °C	
		$\Upsilon^{\mathbf{R}_2}$		R ₁ ,	$\mathbf{Y}^{\mathbf{R}_2}$
	44	Ö			År Ö
	+	C			13
	ArB(C)) ₂			10
	12 a	-f			
	12a Ar=	= Ph			
	12b Ar=	= 4-CF ₃ -	Ph		
	12c Ar= 12d Ar=	= 4-MeO = 1-Napl	-Pn hthyl		
	12e Ar=	= 2-CH ₃ -	Ph		
	12f Ar=	= 2,6-(CI	H ₃) ₂ -Ph		
entry	11	12	time (h)	yield $(\%)^a$ of ${\bf 13}$	ee [%] ^b (config)
entry 1	11 11A	12 12b	time (h) 19	yield (%) ^a of 13 78 (13Ab)	$\frac{\text{ee } [\%]^b \text{ (config)}}{92 (R)}$
entry 1 2	11 11A 11A	12 12b 12c	time (h) 19 4	yield (%) ^a of 13 78 (13Ab) 73 (13Ac)	ee [%] ^b (config) 92 (R) 79 (R)
entry 1 2 3	11 11A 11A 11A	12 12b 12c 12d	time (h) 19 4 4	yield (%) ^a of 13 78 (13Ab) 73 (13Ac) 95 (13Ad)	ee [%] ^b (config) 92 (R) 79 (R) 95 (R)
entry 1 2 3 4	11 11A 11A 11A 11A	12 12b 12c 12d 12e	time (h) 19 4 4 20	yield (%) ^a of 13 78 (13Ab) 73 (13Ac) 95 (13Ad) 69 (13Ae)	$\begin{array}{c} {\rm ee}\;[\%]^b({\rm config})\\ {\rm 92}(R)\\ {\rm 79}(R)\\ {\rm 95}(R)\\ {\rm 78}(R) \end{array}$
entry 1 2 3 4 5	11 11A 11A 11A 11A 11A 11A	12 12b 12c 12d 12e 12f	time (h) 19 4 4 20 20	yield (%) ^a of 13 78 (13Ab) 73 (13Ac) 95 (13Ad) 69 (13Ae) nc (13Af)	$\begin{array}{c} {\rm ee}\;[\%]^b\;({\rm config})\\ {\rm 92}\;(R)\\ {\rm 79}\;(R)\\ {\rm 95}\;(R)\\ {\rm 78}\;(R) \end{array}$
entry 1 2 3 4 5 6	11 11A 11A 11A 11A 11A 11B	12 12b 12c 12d 12e 12f 12a	time (h) 19 4 20 20 4	yield (%) ^a of 13 78 (13Ab) 73 (13Ac) 95 (13Ad) 69 (13Ae) nc (13Af) 96 (13Ba)	$\begin{array}{c} {\rm ee}\; [\%]^b \; ({\rm config}) \\ {\rm 92}\; (R) \\ {\rm 79}\; (R) \\ {\rm 95}\; (R) \\ {\rm 78}\; (R) \\ \\ {\rm 83}\; (R) \end{array}$
entry 1 2 3 4 5 6 7	11 11A 11A 11A 11A 11A 11B 11C	12 12b 12c 12d 12e 12f 12a 12a	time (h) 19 4 20 20 4 4 4	yield (%) ^a of 13 78 (13Ab) 73 (13Ac) 95 (13Ad) 69 (13Ae) nc (13Af) 96 (13Ba) 98 (13Ca)	$\begin{array}{c} {\rm ee}\;[\%]^b({\rm config})\\ {\rm 92}(R)\\ {\rm 79}(R)\\ {\rm 95}(R)\\ {\rm 78}(R)\\ {\rm 83}(R)\\ {\rm 86}(R) \end{array}$
entry 1 2 3 4 5 6 7 8	11 11A 11A 11A 11A 11A 11B 11C 11C	12 12b 12c 12d 12e 12f 12a 12a 12d	time (h) 19 4 20 20 4 4 4 4	yield (%) ^a of 13 78 (13Ab) 73 (13Ac) 95 (13Ad) 69 (13Ae) nc (13Af) 96 (13Ba) 98 (13Ca) 96 (13Cd)	$\begin{array}{c} {\rm ee}\;[\%]^b\;({\rm config})\\ {\rm 92}\;(R)\\ {\rm 79}\;(R)\\ {\rm 95}\;(R)\\ {\rm 78}\;(R)\\ {\rm 83}\;(R)\\ {\rm 86}\;(R)\\ {\rm 95}\;(+) \end{array}$
$\begin{array}{c} \text{entry} \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9^c \end{array}$	11 11A 11A 11A 11A 11A 11A 11B 11C 11C 11D	12 12b 12c 12d 12e 12f 12a 12a 12a 12d 12a	time (h) 19 4 20 20 4 4 4 4 17	yield (%) ^a of 13 78 (13Ab) 73 (13Ac) 95 (13Ad) 69 (13Ae) nc (13Af) 96 (13Ba) 98 (13Ca) 96 (13Cd) nc (13Da)	$\begin{array}{c} {\rm ee}\;[\%]^b\;({\rm config})\\ {\rm 92}\;(R)\\ {\rm 79}\;(R)\\ {\rm 95}\;(R)\\ {\rm 78}\;(R)\\ {\rm 83}\;(R)\\ {\rm 86}\;(R)\\ {\rm 95}\;(+) \end{array}$
entry 1 2 3 4 5 6 7 8 9 ^c 10	11 11A 11A 11A 11A 11A 11A 11B 11C 11C 11D 11E	12 12b 12c 12d 12e 12f 12a 12a 12a 12a 12a	time (h) 19 4 20 20 4 4 4 17 19	yield (%) ^a of 13 78 (13Ab) 73 (13Ac) 95 (13Ad) 69 (13Ae) nc (13Af) 96 (13Ba) 98 (13Ca) 96 (13Cd) nc (13Da) 96 (13Ea)	$\begin{array}{c} {\rm ee}\;[\%]^b\;({\rm config})\\ 92\;(R)\\ 79\;(R)\\ 95\;(R)\\ 78\;(R)\\ 83\;(R)\\ 86\;(R)\\ 95\;(+)\\ 31\;(S) \end{array}$
entry 1 2 3 4 5 6 7 8 9 ^c 10	11 11A 11A 11A 11A 11A 11A 11B 11C 11C 11D 11E	12 12b 12c 12d 12e 12f 12a 12a 12d 12a 12a	time (h) 19 4 20 20 4 4 4 4 17 19 0 □ 0 □ 0	yield (%) ^a of 13 78 (13Ab) 73 (13Ac) 95 (13Ad) 69 (13Ae) nc (13Af) 96 (13Ba) 98 (13Ca) 96 (13Cd) nc (13Da) 96 (13Ea)	ee [%] ^b (config) 92 (R) 79 (R) 95 (R) 78 (R) 83 (R) 86 (R) 95 (+) 31 (S)
entry 1 2 3 4 5 6 7 8 9 ^c 10	11 11A 11A 11A 11A 11A 11A 11A 11B 11C 11C 11D	12 12b 12c 12d 12e 12f 12a 12a 12a 12a	time (h) 19 4 20 20 4 4 4 17 19 0 0	yield $(\%)^a$ of 13 78 (13Ab) 73 (13Ac) 95 (13Ad) 69 (13Ae) nc (13Af) 96 (13Ba) 98 (13Ca) 96 (13Cd) nc (13Da) 96 (13Ea)	ee [%] ^b (config) 92 (R) 79 (R) 95 (R) 78 (R) 83 (R) 86 (R) 95 (+) 31 (S)
entry 1 2 3 4 5 6 7 8 9 ^c 10	11 11A 11A 11A 11A 11A 11A 11B 11C 11C 11D 11E	12 12b 12c 12d 12e 12f 12a 12a 12a 12a 12a	time (h) 19 4 20 20 4 4 4 17 19 0 0 0 0 0 0 0 0 0 0 0 0 0	yield $(\%)^a$ of 13 78 (13Ab) 73 (13Ac) 95 (13Ad) 69 (13Ae) nc (13Af) 96 (13Ba) 98 (13Ca) 96 (13Cd) nc (13Da) 96 (13Ea)	ee [%] ^b (config) 92 (R) 79 (R) 95 (R) 78 (R) 83 (R) 86 (R) 95 (+) 31 (S)

^{*a*} Isolated yield. nc = no conversion. ^{*b*} Determined by HPLC analysis with a chiral stationary phase column (Chiralpak AD-H or Chiralcel OD-H). ^{*c*} 3% Rh(acac)(CH₂CH₂)₂, 3.3% (2*S*,5*S*)-**6**, dioxane/H₂O 10/1, 100 °C.

a lower selectivity and yield (69% yield, 78% ee, entry 4), whereas no reaction was observed for 2,6-dimethylphenyl boronic acid (**12f**, entry 5). A lower selectivity also was observed with the electron-rich 4-MeO-Ph boronic acid (79% ee, 73% yield, entry 2).

The Rh(I)/DIPHONANE-catalyzed addition was also applied to cyclopentenone **11B** and cycloheptenone **11C** as acceptors. The addition to **11B** resulted in the phenyl adduct **13Ba** with good selectivity and excellent yield (entry 6, 83% ee, 96% yield). Addition to **11C** with both phenylboronic acid (**12a**) and 1-naphthylboronic acid (**12d**) resulted in the corresponding 1,4-adducts with high yield and good stereoselectivity (**13Ca**, entry 7, 98% yield, 86% ee and **13Cd**, entry 8, 96% yield and 95% ee, respectively.)

No reactivity was observed in the addition of **12a** to coumarin **11D** (entry 9).^{3q} Although the catalyst showed good reactivity in the addition of **12a** to the linear enone **11E** (92% yield, entry 10), the enantioselectivity dropped remarkably (31% ee) Noteworthy is the fact that 1,2-addition was only observed in minor amounts (<3%) in the case of **13Ad** and **13Ab**.

In conclusion, the Rh(I) complex derived from the new bisdiphenylphosphine DIPHONANE catalyses the asymmetric 1,4-addition of boronic acids to enones with ee's up to 95% ee. The intermediate **2** should allow elaboration of a broader range of 2,5-norbornane bisphosphines, both C_2 - and C_1 -symmetric.

Acknowledgment. The authors gratefully acknowledge financial support by Ghent University. K.V. is a Research Assistant of the Research Foundation-Flanders (F.W.O.-Vlaanderen).

Supporting Information Available: Experimental procedures and characterization of compounds 2-6, 14Aa and its epimer 15Aa, and 13Cd. X-ray crystal structure of (\pm) -3 and (1S,2S,4S,5S)-5 in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0522788

⁽¹⁵⁾ Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc. 2002, 124, 5052–5058.

⁽¹⁶⁾ For the assignment of the configuration, see Supporting Information.
(17) Intermolecular Rh-catalyzed 1,2-addition of arylboronic acids to cyclobutanone: (a) Matsuda, T.; Makino, M.; Murakami, M. Org. Lett.
2004, 6, 1257–1259. (b) Matsuda, T.; Makino, M.; Murakami, M. Bull. Chem. Soc. Jpn. 2005, 78, 1528–1533. Intramolecular Rh-catalyzed 1,2-addition to ketones: (c) Takewasa, A.; Yamoguchi, K.; Ohmuna, T.; Yamamoto, Y.; Miyaura, N. Synlett 2002, 1733–1735. (d) Miura, T.; Shimada, M.; Murakami, M. Synlett 2005, 667–669. (e) Shintani, R.; Okamoto, K.; Otomaru, Y.; Ueyama, K.; Hayashi, T. J. Am. Chem. Soc. 2005, 127, 54–55. (f) Matsuda, T.; Makino, M.; Murakami, M. Angew. Chem., Int. Ed. 2005, 44, 4608–4611. Rh-catalyzed trimethylphenylstannane addition to cyclohexanone: (g) Oi, S.; Moro, M.; Fukuhara, H.; Kawanishi, T.; Inoue, Y. Tetrahedron 2003, 59, 4351–4361.